РОССИЙСКАЯ АКАДЕМИЯ МЕДИЦИНСКИХ НАУК

Российский онкологический научный центр им. Н.Н. Блохина (РОНЦ им. Н.Н. Блохина РАМН)

Отчет

О научно-исследовательской работе по теме «Изучение противоопухолевой активности фармакологических субстанций 1,3-диэтилбензимидазолия трийодид (ДЭБИ-Т) и 1,3-диэтилбензимидазолия йодид (ДЭБИ-М) на перевиваемых опухолях мышей»

по договору между РОНЦ им. Н.Н. Блохина РАМН и ООО «Фармпрепарат» № 01/2011- Ст от 01. 02.2011 г.

Научный руководитель
Зав. отделом экспериментальной химиотерапии,
д.м.н., профессор

Г.К. Герасимова

Список исполнителей

Руководитель работ, зав. отделом экспериментальной химиотерапии, д.м.н., профессор

Г.К. Герасимова

Исполнители:

Ведущий научный сотрудник, к.м.н.

Ведущий научный сотрудник, к.б.н.

Лаборант-исследователь

и. Мому Н.П. Маркова Мому - И.С. Голубева Л.Г. Бигбулатова

Содержание

Введение	4
Основная часть	6
Материалы и методы	6
Результаты исследований	10
Заключение	15
Список литературы	18

Введение

Препарат СТЕЛЛАНИН[®] (1,3-диэтилбензимидазолия трийодид) — оригинальная, зарегистрированная в РФ активная фармацевтическая субстанция (РУ ЛСР-000161/09 от 16.01.2009 г.), разработан фирмой ООО «Фармпрепарат» и разрешен для практического применения в лекарственной форме: Стелланин, капли для местного применения и приема внутрь 40 мг/мл (РУ ЛСР-002261/10 от 18.03.2010 г.).

Активное вещество препарата — 1,3-диэтилбензимидазолия трийодид — представлено в готовой лекарственной форме в виде комплекса с поливинилпирролидоном медицинским низкомолекулярным. Особенностью Стелланина заключается в том, что это комплексное соединение объединяет в себе биологическую активность йода и органической составляющей (катиона 1,3- диэтилбензимидазолия).

Механизм бактерицидного действия основан на взаимодействии активного высвобождающегося йода с белками бактериальной стенки и ферментными белками микроорганизмов с образованием йодаминов, что приводит к денатурации белковых молекул. Противовоспалительное и регенерирующее действие Стелланина авторы связывают \mathbf{c} диэтилбензимидазолием, т.к. этими свойствами обладает также соединение 1,3-диэтилбензимидазолия монойодид, которого отсутствует y противомикробное действие [1].

Препарат при незначительной токсичности (LD50>10000 мг/кг при пероральном введении крысам) обладает широким спектром антибактериальной, противогрибковой активности, выраженным противовоспалительным и регенерационным действием. Препарат Стелланин прошел полное экспериментальное доклиническое изучение безопасности и фармакологической активности, клинические испытания и разрешен для практического применения в качестве противомикробного лекарственного средства.

Последние годы появилось много информации о том, что препараты с противовоспалительным действием могут обладать противоопухолевой активностью. Кроме того, недавно было доказано, что составная часть молекулы Стелланина – катион 1,3-диэтилбензимидазолия восстанавливает функциональную активность митохондрий [5], которая значительного количества видов опухолевых клеток. Активация функций митохондрий в онкотрансформированных клетках приводит к запуску процесса апоптоза [6-8], что было ранее показано при действии Стелланина [9]. основанием Эти данные явились ДЛЯ проведения настоящего исследования.

В водном растворе концентрация 1,3-диэтилбензимидазолия трийодида снижается на 50% через 30 минут за счет гидролиза и образования 1,3-диэтилбензимидазолия монойодида (ДЭБИ-М), а в присутствии белков происходит ускорение образования ДЭБИ-М. Также фармакокинетические исследования свидетельствуют о том, что ДЭБИ-М (монойодид 1,3-диэтилбензимидазолия) является метаболитом ДЭБИ-Т.

Цель исследования настоящего сравнительная оценка противоопухолевого действия фармакологических субстанций 1,3диэтилбензимидазолия трийодида (ДЭБИ-Т, Стелланина) 1.3диэтилбензимидазолия монойодида (ДЭБИ-М) на 2-х моделях опухолевого роста – двух штаммах солидных опухолей (меланоме В16 и раке толстой кишки АКАТОЛ) по следующим показателям:

- торможение роста опухолей, увеличение продолжительности жизни по сравнению с контрольной группой;
- изучение зависимости противоопухолевого эффекта препарата от дозы,
 режима и длительности лечения, установление оптимального режима применения;
- оценка токсичности применяемых режимов по срокам гибели леченных животных.

Основная часть

Материалы и методы

Доклинические исследования проведены в соответствии со следующими нормативными документами: Приказ МЗ и СР РФ №708н от 23 08.2010 г. и «Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ» Федеральной службы по надзору в сфере здравоохранения и социального развития РФ [2].

Работы животными проведены соответствии c В строгом cзаконодательством Российской Федерации, положениями «Европейской конвенции позвоночных животных, используемых 0 защите ДЛЯ экспериментальных И других научных целей», требованиями И «Руководства рекомендациями содержанию использованию ПО И лабораторных животных».

Лабораторные животные.

Мыши получены из разведения отдела лабораторных животных РОНЦ им. Н.Н. Блохина РАМН. Использовано 150 мышей (самки) гибридов первого поколения BDF1 (DBA₂ x C57Bl/6j) и мыши самки линии BALB/C в возрасте 1,5-2 месяца с начальной массой 19-23 г.

Животные содержались в виварии отдела лабораторных животных РОНЦ им. Н. Н. Блохина РАМН в соответствии с санитарными правилами по содержанию лабораторных животных: на брикетированном корме и постоянном доступе к воде, в помещении с естественным освещением и контролируемыми температурой 18°-22°С и влажностью воздуха 65%. Клетки из полипропилена, подстил – опилки.

Перед лечением мышей распределяли по группам. Число животных в контрольной группе составляло 12 мышей, в опытных группах по 6-7 животных. Наблюдение за животными проводили до их гибели.

Модели опухолевого роста

Исследования выполнены на перевиваемых моделях опухолевого роста мышей — солидных опухолях: меланоме B16 и аденокарциноме толстой кишки мышей, штамм АКАТОЛ.

Штаммы перевиваемых опухолей получены из банка опухолевых штаммов РОНЦ РАМН и поддерживались in vivo в отделе экспериментальной химиотерапии на линейных животных.

В опытах использованы 2-10 пассажи in vivo. Опухоли перевивали лабораторным животным по стандартным методикам [2].

Меланома В16 поддерживается на линейных мышах линии С57ВІ/6j. Средняя продолжительность жизни животных с опухолью 30-40 дней.

Аденокарцинома толстой кишки АКАТОЛ [3].

Опухоль впервые возникла в 1971 г. из подкожного сингенного трансплантата толстой кишки эмбриона у мыши BALB/C. Штамм был создан в лаборатории вирусологии ОНЦ РАМН в 1972 г. [4]. Опухоль АКАТОЛ представляет собой дифференцированную медленно растущую аденокарциному толстой кишки мыши. Средняя продолжительность жизни животных с опухолью – 57 дней. Поддерживается на мышах линии BALB/C.

В опытах использован 2-ой пассаж перевиваемой модели. Опухоли перевивали по стандартной методике половозрелым мышам – самкам линии ВАLВ/С массой 18-20 г в возрасте 1,5-2 мес. Инокуляция опухолевых клеток проводилась подкожно в правую подмышечную область каждой мыши по 50 мг опухолевой взвеси в среде 199 в разведении 1:10 (5 х 10⁶ клеток).

Фармакологические субстанции

Субстанция ДЭБИ-Т (1,3-диэтилбензимидазолия трийодид) и субстанция (1,3-диэтилбензимидазолия монойодид) получены от фирмы ООО «Фармпрепарат». Препарат ДЭБИ-М получен в виде сухого порошка, растворимого в водных средах, препарат ДЭБИ-Т – в виде готового

лекарственного средства "Стелланин капли для местного применения и приема внутрь 40 мг/кг".

Рабочие растворы изучаемых субстанций приготовляли непосредственно перед введением животным.

Препарат вводили мышам per os с помощью зонда.

Лечение животных. Лечение мышей с солидными опухолями В16 и АКАТОЛ начинали через 48 часов после перевивки опухолей.

Мышам с меланомой В16 препараты ДЭБИ-Т и ДЭБИ-М вводили рег оз в режиме 1-кратного или 3-х разового введения в сутки с интервалом 3 часа между введениями. Курс лечения 10 дней. В качестве препарата ДЭБИ-Т использовали зарегистрированную лекарственную форму в виде капель (40 мг/кг).

На перевиваемой модели рака толстой кишки АКАТОЛ лечение Стелланином в виде готовой лекарственной формы (капли 40 мг/кг) рег оз проводили в нескольких режимах: 3 раза в сутки с интервалом 3 часа между введениями в дозах 5; 10 и 20 мг/кг и в режиме 2 раза в сутки с интервалом 6 часов между введениями в дозах 7,5; 15 и 30 мг/кг ДЭБИ-Т. Курс лечения 10 дней. Кроме того, Стелланин вводили рег оз в дозе 10 мг/кг 1 раз в сутки в течение 10 дней, а также 2 и 10 мг/кг с интервалом 24 часа между введениями в течение 20 дней.

Оценка результатов лечения проведена по показателям торможения роста опухолей и увеличению продолжительности жизни [2].

Торможение роста опухоли (ТРО) вычислялось по формуле:

TPO
$$\%= (Vk - Vo)/Vk \times 100,$$

где Vk и Vo – средний объем опухолей (мм³) в контрольной и опытной группах, который для каждой солидной опухоли определялся как произведение размеров трех перпендикулярных диаметров опухолевого узла.

Проводили измерение объема опухолей на разные сроки осле окончания лечения.

Увеличение продолжительности жизни (УПЖ, %) леченных животных по сравнению с контролем вычисляли по формуле:

УПЖ % = (CПЖо - CПЖк)/CПЖк x 100,

где СПЖо и СПЖк – средняя продолжительность жизни (сутки) в опытных и контрольных группах животных. Показатели эффективности изучаемых препаратов определяли в сравнении с контрольными группами.

Активными в противоопухолевом отношении считали дозы препаратов, вызывающие торможение роста опухоли $\geq 70\%$ продолжительностью не менее 7 дней после окончания лечения или увеличения продолжительности жизни животных $\geq 25\%$.

Токсичность изученных режимов и доз препаратов оценивали по срокам гибели леченных животных в сравнении с гибелью животных в контрольной группе. Состояние животных визуально оценивали ежедневно.

Трупы животных утилизировали в соответствии с санитарными правилами РОНЦ им. Н.Н. Блохина РАМН.

Статистическая оценка результатов

Для выполнения экспериментов составляли группы численностью, достаточной для проведения статистического анализа и расчета показателей достоверности. Для всех количественных данных вычислено групповое среднее арифметическое (М) и стандартная ошибка среднего (SEM). Различия между контрольными и экспериментальными группами считаются достоверными при 95% уровне значимости (р<=0.05) Статистическая обработка данных выполнена с помощью программы Statistica for Windows 5.5.

Достоверными считали различия между показателями контрольных и опытных групп при p < 0.05.

Результаты исследований

Противоопухолевая активность Стелланина в отношении перевиваемой опухоли мышей – меланомы В16 исследована в широком диапазоне доз и разных режимах применения. Результаты представлены в таблицах 1 и 2.

Таблица 1
Противоопухолевая активность Стелланина (ДЭБИ-Т) и ДЭБИ-М при внутрижелудочном введении на мышах на модели меланомы В16

Разовая доза, мг/кг	Дн	и после	ТРО % окончан		ПЖ дни	СПЖ дни	УПЖ %	Число живот-		
	1	4	8	12	16				ных в группе	
Стелланин (ДЭБИ-Т)										
0,2	22	15	23	10	33	21-37	26,3	12	7	
ДЭБИ-М										
1	35	42	38	27	45	19-29	24,6	5	7	
5	28	46	40	56	53	17-28	22,6	-4	7	
Контроль						18-28	23,5		12	

Примечание. Режим лечения: 3 раза в сутки с интервалом 3 часа в течение 10 дней.

ПЖ — продолжительность жизни животных (минимум-максимум).

СПЖ — средняя продолжительность жизни.

УПЖ — увеличение продолжительности жизни.

В таблице 1 представлены данные по применению препаратов в следующих дозах: Стелланин – 0,2 мг/кг, ДЭБИ-М – 1 и 5 мг/кг в режиме 3 раза в сутки. В таких дозах препараты оказались не эффективными ни по одному из оцениваемых показателей (ТРО <70%, УПЖ < 25%).

Применение Стелланина в более высоких дозах (2, 5 и 10 мг/кг) в течение 10 дней в двух режимах (одноразового и трехразового в сутки) показало, что непосредственно после окончания лечения наблюдается зависимое от дозы и режима лечения торможение роста опухоли по сравнению с контрольной группой животных (таблица 2). Максимальный эффект получен при дозе 10 мг/кг при ежедневном трехразовом в течение 10

дней введении мышам Стелланина: 80% ТРО непосредственно после окончания лечения и сохранение более 50% ТРО в течение 13 дней.

Таблица 2 Противоопухолевая активность Стелланина при пероральном введении мышам на модели меланомы B16

Режим лечения,	Объе	ем опухоли (м	УПЖ	Кол-во живот-		
разовая	Д	ни после око	<i>v</i> 11710	ных в		
доза (мг/кг)	2	6	10	13	(%)	группе
3 раза/ сутки по 10 мг/кг	559±85 (80%)	1837±317 (67%)	2920±789 (66%)	4609±413 (58%)	15	6
1 раз/ сутки по 10 мг/кг	1038±172 (63%)	2899±490 (49%)	3854±341 (57%)	5278±207 (51%)	11	6
3 раза/ сутки по 5 мг/кг	1088±124 (61%)	3697±299 (34%)	4745±432 (45%)	6510±527 (40%)*	13	6
1 раз/ сутки по 5 мг/кг	1446±189 (48%)	3280±435 (42%)	5268±555 (39%)	6670±767 (39%)*	2	6
3 раза/ сутки по 2 мг/кг	1105±235 (61%)	2726±603 (52%)	4914±729 (43%)	5692±1190 (48%)*	9	6
1 раз/ сутки по 2 мг/кг	1416±149 (50%)	3614±740 (36%)	5163±779 (41%)	6297±642 (42%)*	17	6
Контроль	2803±315	5627±450	8687±995	10841±217 1	-	12

^{* -} различия с контролем недостоверны (p>0,05) Режимы лечения. Лечение проводили в течение 10 дней в двух режимах: I) три раза в сутки с интервалом 3 часа ежедневно в разовых дозах 10 мг/кг, 25 мг/кг, 50 мг/кг; II) один раз в сутки в тех же дозах.

В связи с недостаточной фармакологической активностью субстанции ДЭБИ-М в экспериментах in vivo дальнейшее его изучение представилось нецелесообразным. В то же время, на модели опухолевого роста рака толстого кишечника мышей штамм АКАТОЛ была изучена зависимость противоопухолевого эффекта Стелланина от дозы и режима его применения. Результаты представлены в таблице 3.

Исследованы режимы внутрижелудочного ежедневного применения препарата однократно, двукратно и трехкратно в течение 10 или 20 дней.

Стелланин в дозе 5 мг/кг 3 раза в сутки с интервалом между введениями 3 часа в течение 10 дней (суммарная суточная доза 15 мг/кг) вызывает небольшой противоопухолевый эффект, сохраняющийся до 13 дня после окончания лечения на уровне 52% ТРО без увеличения продолжительности жизни. Однако необходимо отметить, что гибель леченных животных началась на 23 дня позже, чем в контрольной группе (таблица 3).

Результаты противоопухолевой активности Стелланина в тех же курсовых дозах, но в режиме 2 раза в сутки с интервалом 6 часов между введениями в течение 10 дней, представлены в таблице 4 и свидетельствуют о том, что Стелланин в дозах 15 и 30 мг/кг (суммарная суточная доза 30 и 60 мг/кг) вызывает умеренное торможение роста опухоли непосредственно после окончания лечения на 61 и 70%, которое сохраняется до 12 дня на уровне 50-52% ТРО, соответственно.

Такой же непосредственный эффект после окончания лечения наблюдается при действии Стелланина в дозе 10 мг/кг однократно в сутки, применении препарата 20 дней. но при течение Средняя продолжительность жизни животных составляет 72 дня, т.е. такая же, как при дозе 30 мг/кг 2 раза в сутки с интервалом между введениями 6 часов в течение 10 дней.

Таблица 3 Противоопухолевая активность Стелланина при пероральном введении мышам на модели рака толстого кишечника АКАТОЛ

Доза мг/кг х	Курсо-	6-й день в	Объем опухоли (мм ³) М±т (ТРО %)								Гибель
введение/	вая	процессе		дни по	ЖП	СПЖ	УПЖ	живот-ных			
интервал х дни доза	лечения	1	4	8	12-13	15-16	дни	дни	%		
20 x 3/ 3 x 10		225±27	724±59	1024±94	2149±252	1008±381	4854±686	49 – 142	81	5,7*	0/7
	600	(51)	(42)	(56)	(40)	(36)	(3)*				
30 x 2/6 x 10		205±28	806±93	1272±292	1627±327	2344±465	3533±831	37 - 99	72,9	14*	0/7
		(59)	(61)	(56)	(58)	(52)	(38)				
10 x 3/3 x 10		221±27	790±141	1080±190	2293±503	3740±1313	3748±579	33 – 90	67,3	- 12*	0/7
	300	(52)	(36)	(54)	(36)*	(24)*	(25)*				
$15 \times 2/6 \times 10$		230±35	583±114	1001±106	1829±108	2460±196	3318±421	44 - 92	56,2	- 12*	0/7
		(54)	(70)	(65)	(53)	(50)	(42)				
5 x 3/3 x 10		290±28	624±63	861±97	1460±116	2367±193	3264±387	67 – 106	78,1	2*	0/7
	150	(37)	(50)	(63)	(59)	(52)	(35)				
$7.5 \times 2/6 \times 10$		234±14	892±58	1294±147	2490±259	3045±262	3875 ± 422	56 - 84	69	8*	0/7
		(53)	(56)	(55)	(36)	(38)	(32)				
10 x 1/24 x 10	100	328±40	1077±128	1854±249	2593±274	3220±422	4282±553	43 - 100	68	6*	0/7
		(34)	(47)	(36)	(33)	(34)	(25)*				
10 x 1/24 x 20	200	181±28	742±53	1097±82	2074±266	2741±213	4185±395	46 - 100	72	13*	0/7
		(63)	(64)	(62)	(47)	(44)	(26)*				
2 x 1/24 x 20 4	40	287±44	986±106	1526±221	2554±320	2936±385	3940±623	50 - 107	66,6	4,3*	0/7
		(42)	(52)	(47)	(34)	(40)	(31)		, -)-	
Контроль			<u> </u>			1		44 – 92	76,6		
								29 - 101	64		

Примечание к таблице: * - различия с контролем недостоверны (р>0,05)

Таким образом, анализ результатов противоопухолевой активности Стелланина в отношении перевиваемых солидных моделей опухолевого роста мышей выявляет зависимое от дозы и режима лечения торможение роста опухолей по сравнению с контрольной группой животных.

Максимальный эффект получен при дозе 10 мг/кг при ежедневном трехразовом введении препарата в течение 10 дней мышам с меланомой В16. Отмечено торможение роста опухоли 80% непосредственно после окончания лечения с сохранением эффекта более 50% в течение 13 дней (таблица 2).

Стелланин в дозе 15 мг/кг 2 раза в сутки с интервалом 6 часов в течение 10 дней на модели рака толстого кишечника АКАТОЛ вызывает 70% ТРО непосредственно после окончания лечения с сохранением эффекта около 50% до 12-13 дня (таблица 3). Такой же непосредственный эффект 64% ТРО после окончания лечения наблюдался и при применении однократной суточной дозы 10 мг/кг в течение 20 дней.

Таким образом, на двух солидных опухолях — меланоме В16 и раке толстой кишки АКАТОЛ показано, что препарат Стелланин проявляет длительный стабильный противоопухолевый эффект (70-50% ТРО) в течение 2 недель после окончания лечения при разовых дозах 15-30 мг/кг в режиме 2 или 3 раза в сутки в течение 10 дней или однократно в дозе 10 мг/кг, но при более длительном курсе применения (20 дней).

Заключение

СТЕЛЛАНИН[®] Препарат (1,3-диэтилбензимидазолия трийодид) РΦ В активная оригинальная, зарегистрированная фармацевтическая субстанция (РУ ЛСР – 000161/09 от 16.01.2009 г.), разработан фирмой ООО «Фармпрепарат» и разрешен для практического применения в лекарственной форме: Стелланин капли для местного применения и приема внутрь 40 мг/кг (РУ ЛСР-002261/10 от 18.03.2010 г.). Препарат Стелланин прошел полное экспериментальное доклиническое изучение безопасности фармакологической активности, клинические испытания и разрешен для практического применения в качестве противомикробного лекарственного средства.

Действующим началом препарата является комплексное гетероциклическое йодсодержащее соединение.

Препарат при незначительной токсичности (LD50>10000 мг/кг при пероральном введении крысам) обладает широким спектром антибактериальной, противогрибковой активности, а также выраженным противовоспалительным и регенерационным действием.

Механизм бактерицидного действия основан на взаимодействии активного высвобождающегося йода с белками бактериальной стенки и ферментными белками микроорганизмов с образованием йодаминов, что приводит к денатурации белковых молекул. Противовоспалительное и регенерирующее действие Стелланина связано с диэтилбензимидазолием, т.к. этими свойствами обладает также соединение — 1,3-диэтилбензимидазолия йодид, у которого отсутствует противомикробное действие.

В последние годы появилось много информации о том, что препараты с противовоспалительным действием могут обладать противоопухолевой активностью. Кроме того, недавно было доказано, что составная часть молекулы Стелланина – катион 1,3-диэтилбензимидазолия восстанавливает функциональную активность митохондрий [5], которая угнетена у

значительного количества видов опухолевых клеток. Активация функций митохондрий в онкотрансформированных клетках приводит к запуску процесса апоптоза [6-8], что было ранее показано при действии Стелланина [9]. Эти данные явились основанием для проведения настоящего исследования.

В настоящей работе проведено сравнительное доклиническое изучение противоопухолевой активности зарегистрированного в России препарата Стелланин (ДЭБИ-Т) на 2-х моделях опухолевого роста — штаммах солидных опухолей (меланоме В16 и раке толстой кишки АКАТОЛ), а также метаболита Стелланина — ДЭБИ-М на 1-й моделе опухолевого роста — меланоме В16 по следующим показателям:

- торможение роста опухолей, увеличение продолжительности жизни по сравнению с контрольной группой;
 - установление оптимального режима применения;
 - оценка токсичности применяемых режимов по срокам гибели леченных животных.

Проведенные исследования эффективности показали, что субстанция ДЭБИ-М оказалась малоэффективна на солидной опухоли мышей меланоме В16.

В то же время, препарат Стелланин проявил на солидных опухолях меланоме В16 и раке толстой кишки АКАТОЛ длительный стабильный противоопухолевый эффект (70-50% ТРО) в течение 2-х недель после окончания лечения. Установлены оптимальные режимы применения препарата при внутрижелудочном применении при разовых дозах 15-30 мг/кг 2-3 раза в сутки в течение 10 дней или однократно в дозе 10 мг/кг, но при более длительном курсе (20 дней).

Показано также, что Стелланин во всех исследованных дозах и режимах применения не стимулировал рост опухолей и не обладал токсичностью: гибели леченных животных ранее контрольных отмечено не было.

Таким образом, препарат Стелланин в лекарственной форме капли для приема внутрь 40 мг/кг по результатам доклинического изучения

противоопухолевой активности, а также в связи с новым механизмом его противоопухолевого действия (активация митохондрий в раковых клетках), проведения клинического ОНЖОМ рекомендовать для исследования противоопухолевой эффективности у больных раком желудка с исчерпанными специфического возможностями лечения. Целесообразность изучения фармакологической активности Стелланина именно при раке желудка определяется обеспечением максимальной биодоступности препарата опухоли при зарегистрированном пероральном способе его применения.

Список литературы

- 1. Страдомский Б.В., Солодунов Ю.Ю., Лыкова Е.О. Экспериментальная и клиническая фармакология мазевых форм Стелланина (1,3.- диэтилбензимидазолия трийодида). Ростов-на-Дону. 2009. 70 С.
- 2. Методические указания по изучению противоопухолевой активности фармакологических веществ. В кн. «Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ». Под ред. Р.У. Хабриева. 2 изд. переработ. и дополнен. М.: ОАО изд. «Медицина». 2005. с. 637-651.
- 3. Экспериментальная оценка противоопухолевых препаратов в СССР и США. Под ред. З.П. Софьиной, А.Б. Сыркина, А. Голдина, А. Кляйна. М.: Медицина. 1980.
- 4. Зинзар С.Н., Лейтина Б.И. Тунян Б.Г. и др. Злокачественные опухоли, возникщие из сингенных трансплантатов эмбрионального желудочно-кишечного тракта // Вопросы онкологии. 1972. т.18, №4. с. 89-92.
- 5. Изучение влияния 1,3-диэтилбензимидазолия йодида на экспрессию генов в культуре клеток человека. Отчет Южного научного центра Российской академии наук. 2010. 20 С.
- 6. Bonnet S., Archer S.L., Allalunis-Turner J., Haromy1A., Beaulieu C., Thompson R., Lee C.T., Lopaschuk G.D., Puttagunta L., Bonnet S., Harry G., Hashimoto K., Porter C. J., Andrade M.A., Thebaud B., Michelakis E.D. 2007. A Mitochondria-K+ Channel Axis Is Suppressed in Cancer and Its Normalization Promotes Apoptosis and Inhibits Cancer Growth // Cancer Cell. 11: 37-51.
- 7. Michelakis E.D., Webster L., Mackey J.R. 2008. Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer // British Journal of Cancer. 99: 989–994.
- 8. Wong J.Y., Huggins G.S., Debidda M., Munshi N.C., De Vivo I. 2008. Dichloroacetate induces apoptosis in endometrial cancer cells // Gynecologic Oncology. 109(3): 394-402.

9. Жукова О.С., Герасимова Г.К., Солодунов Ю.Ю., Страдомский Б.В. 2010. Цитотоксическое действие препарата Стелланин // Российский биотерапевтический журнал. 9 (2). С. 69.